Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(48): 14811-6, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26553978

RESUMO

Crystallography of the cores of phosphotyrosine-activated dimers of STAT1 (132-713) and STAT3 (127-722) bound to a similar double-stranded deoxyoligonucleotide established the domain structure of the STATs and the structural basis for activation through tyrosine phosphorylation and dimerization. We reported earlier that mutants in the linker domain of STAT1 that connect the DNA-binding domain and SH2 domain can prevent transcriptional activation. Because of the pervasive importance of persistently activated STAT3 in many human cancers and the difficulty of finding useful drug candidates aimed at disrupting the pY interchange in active STAT3 dimers, we have examined effects of an array of mutants in the STAT3 linker domain. We have found several STAT3 linker domain mutants to have profound effects of inhibiting STAT3 transcriptional activation. From these results, we propose (i) there is definite functional interaction of the linker both with the DNA binding domain and with the SH2 domain, and (ii) these putative contacts provide potential new targets for small molecule-induced pSTAT3 inhibition.


Assuntos
Mutação de Sentido Incorreto , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Fator de Transcrição STAT3/metabolismo , Ativação Transcricional , Substituição de Aminoácidos , Linhagem Celular Tumoral , Humanos , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Fosforilação , Multimerização Proteica , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/genética
2.
Nat Neurosci ; 18(11): 1617-22, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26436900

RESUMO

Speech and vocal impairments characterize many neurological disorders. However, the neurogenetic mechanisms of these disorders are not well understood, and current animal models do not have the necessary circuitry to recapitulate vocal learning deficits. We developed germline transgenic songbirds, zebra finches (Taneiopygia guttata) expressing human mutant huntingtin (mHTT), a protein responsible for the progressive deterioration of motor and cognitive function in Huntington's disease (HD). Although generally healthy, the mutant songbirds had severe vocal disorders, including poor vocal imitation, stuttering, and progressive syntax and syllable degradation. Their song abnormalities were associated with HD-related neuropathology and dysfunction of the cortical-basal ganglia (CBG) song circuit. These transgenics are, to the best of our knowledge, the first experimentally created, functional mutant songbirds. Their progressive and quantifiable vocal disorder, combined with circuit dysfunction in the CBG song system, offers a model for genetic manipulation and the development of therapeutic strategies for CBG-related vocal and motor disorders.


Assuntos
Aprendizagem/fisiologia , Proteínas do Tecido Nervoso/genética , Neurônios/fisiologia , Vocalização Animal/fisiologia , Animais , Animais Geneticamente Modificados , Gânglios da Base/fisiologia , Tentilhões , Humanos , Proteína Huntingtina , Aves Canoras/fisiologia
3.
Genes Dev ; 29(19): 2037-53, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26404942

RESUMO

We adapted UV CLIP (cross-linking immunoprecipitation) to accurately locate tens of thousands of m(6)A residues in mammalian mRNA with single-nucleotide resolution. More than 70% of these residues are present in the 3'-most (last) exons, with a very sharp rise (sixfold) within 150-400 nucleotides of the start of the last exon. Two-thirds of last exon m(6)A and >40% of all m(6)A in mRNA are present in 3' untranslated regions (UTRs); contrary to earlier suggestions, there is no preference for location of m(6)A sites around stop codons. Moreover, m(6)A is significantly higher in noncoding last exons than in next-to-last exons harboring stop codons. We found that m(6)A density peaks early in the 3' UTR and that, among transcripts with alternative polyA (APA) usage in both the brain and the liver, brain transcripts preferentially use distal polyA sites, as reported, and also show higher proximal m(6)A density in the last exons. Furthermore, when we reduced m6A methylation by knocking down components of the methylase complex and then examined 661 transcripts with proximal m6A peaks in last exons, we identified a set of 111 transcripts with altered (approximately two-thirds increased proximal) APA use. Taken together, these observations suggest a role of m(6)A modification in regulating proximal alternative polyA choice.


Assuntos
Regiões 3' não Traduzidas/genética , Adenosina/metabolismo , Metilação de DNA/genética , Éxons/genética , Regulação da Expressão Gênica , RNA Mensageiro/química , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Fígado/citologia , Fígado/metabolismo , Camundongos , Poliadenilação , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
4.
J Neurosci Methods ; 157(2): 195-207, 2006 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-16750569

RESUMO

Gene expression data are most useful if they can be associated with specific cell types. This is particularly so in an organ such as the brain, where many different cell types lie in close proximity to each other. We used zebra finches (Taeniopygia guttata), fluorescent tracers and laser capture microdissection (LCM) to collect projection neurons and their RNAs from two interspersed populations from the same animal. RNA amplified from each cell class was reverse transcribed, fluorescently labeled, and hybridized to cDNA microarrays of genes expressed in the zebra finch brain. We applied strict fold-expression criteria, supplemented by statistical analysis, to single out genes that showed the most extreme and consistent differential expression between the two cell classes. Confirmation of the true expression pattern of these genes was made by in situ hybridization and Taqman quantitative PCR (qPCR). High quality RNA was obtained, too, from backfilled neurons birth-dated with bromodeoxyuridine (BrdU). We also quantified changes in the levels of three genes after singing behavior using qPCR. Thus, we have brought together a combination of techniques allowing for the molecular profiling of intermingled populations of projection neurons of known connectivity, age and experience, which should constitute a powerful tool for CNS research.


Assuntos
Encéfalo/citologia , Perfilação da Expressão Gênica/métodos , Microdissecção/métodos , Neurônios/citologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Animais , Tentilhões , Expressão Gênica , Imuno-Histoquímica , Hibridização In Situ , Lasers , Masculino , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vocalização Animal/fisiologia
5.
Proc Natl Acad Sci U S A ; 101(11): 3957-61, 2004 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-15004273

RESUMO

The high vocal center (HVC) of adult male canaries, Serinus canaria, is necessary for the production of learned song. New neurons are added to HVC every day, where they replace older neurons that have died, but the length of their survival depends on the time of year when they are born. A great number of HVC neurons born in the fall, when adult canaries learn a new song, are still present 8 mo later, when this song is used during the breeding season. By contrast, most of the neurons born in HVC in the spring, when little song learning takes place, disappear much sooner. Here we show that infusion of brain-derived neurotrophic factor into HVC during days 14-20 after new HVC neurons are born in the spring confers on them a life expectancy comparable to that of fall-born neurons; this extension on life is not seen when infusion occurs 10 days earlier or later. We suggest that there is, in the adult HVC, a subset of neurons whose life expectancy is determined by brain-derived neurotrophic factor during a sensitive period soon after these neurons reach destination and start forming connections.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Neurônios/efeitos dos fármacos , Animais , Canários/metabolismo , Contagem de Células , Proteínas ELAV , Imuno-Histoquímica , Masculino , Neurônios/citologia , Neurônios/metabolismo , Proteínas de Ligação a RNA/metabolismo , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...